Pii: S0893-6080(98)00144-0
نویسندگان
چکیده
A neural network system for boundary segmentation and surface representation, inspired by a new local-circuit model of visual processing in the cerebral cortex, is used to enhance images of range data gathered by a synthetic aperture radar (SAR) sensor. Boundary segmentation is accomplished by an improved Boundary Contour System (BCS) model which completes coherent boundaries that retain their sensitivity to image contrasts and locations. A Feature Contour System (FCS) model compensates for local contrast variations and uses the compensated signals to diffusively fill-in surface regions within the BCS boundaries. Image noise pixels that are not supported by BCS boundaries are hereby eliminated. More generally, BCS/FCS processing normalizes input dynamic range, reduces noise, and enhances contrasts between surface regions. BCS/FCS processing hereby makes structures such as motor vehicles, roads, and buildings more salient to human observers than in original imagery. The new BCS model improves image enhancement with significant reductions in processing time and complexity over previous BCS applications. The new system also outperforms several established techniques for image enhancement. q 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
A neural network for enhancing boundaries and surfaces in synthetic aperture radar images
A neural network system for boundary segmentation and surface representation, inspired by a new local-circuit model of visual processing in the cerebral cortex, is used to enhance images of range data gathered by a synthetic aperture radar (SAR) sensor. Boundary segmentation is accomplished by an improved Boundary Contour System (BCS) model which completes coherent boundaries that retain their ...
متن کاملExplanation of the "virtual input" phenomenon
We write this letter to comment on the "virtual input" phenomenon reported by Thaler (Neural Networks, 8(1) (1995) 55-65). The author attributed the phenomenon to the network's ability to perform pattern classification and completion, and reported that pruning probability affects the number of virtual inputs observed. Our independent study of Thaler's results, however, reveals a simpler explana...
متن کاملParallel and robust skeletonization built on self-organizing elements
A massively parallel neural architecture is suggested for the approximate computation of the skeleton of a planar shape. Numerical examples demonstrate the robustness of the method. The architecture is constructed from self-organizing elements that allow the extension of the concept of skeletonization to areas remote to image processing.
متن کاملAutomatic early stopping using cross validation: quantifying the criteria
Cross validation can be used to detect when overfitting starts during supervised training of a neural network; training is then stopped before convergence to avoid the overfitting ('early stopping'). The exact criterion used for cross validation based early stopping, however, is chosen in an ad-hoc fashion by most researchers or training is stopped interactively. To aid a more well-founded sele...
متن کاملSynapses as dynamic memory buffers
This article throws new light on the possible role of synapses in information transmission through theoretical analysis and computer simulations. We show that the internal dynamic state of a synapse may serve as a transient memory buffer that stores information about the most recent segment of the spike train that was previously sent to this synapse. This information is transmitted to the posts...
متن کامل